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Abstract

The structure of wild animal social systems depends on a complex combination of intrinsic and
extrinsic drivers. Population structuring and spatial behaviour are key determinants of individu-
als’ observed social behaviour, but quantifying these spatial components alongside multiple other
drivers remains difficult due to data scarcity and analytical complexity. We used a 43-year dataset
detailing a wild red deer population to investigate how individuals’ spatial behaviours drive social
network positioning, while simultaneously assessing other potential contributing factors. Using
Integrated Nested Laplace Approximation (INLA) multi-matrix animal models, we demonstrate
that social network positions are shaped by two-dimensional landscape locations, pairwise space
sharing, individual range size, and spatial and temporal variation in population density, alongside
smaller but detectable impacts of a selection of individual-level phenotypic traits. These results
indicate strong, multifaceted spatiotemporal structuring in this society, emphasising the impor-
tance of considering multiple spatial components when investigating the causes and consequences
of sociality.Ecology Letters (2021)

INTRODUCTION

Social behaviour is an integral component of an animal’s phe-
notype, driving processes including disease transmission, mat-
ing, learning, and selection (Croft et al. 2008; VanderWaal
et al. 2014; Krause et al. 2015; Firth et al. 2018; Sah et al.
2018; Silk et al. 2019; Firth 2020). Contemporary studies of
animal behaviour often use social networks to derive individ-
ual-level network positions, under the assumption that
between-individual variation in network positioning is indica-
tive of between-individual variation in social behaviour
(Franks et al. 2010; Krause et al. 2015; Sosa et al. 2021).
However, an animal’s position in its social network also inter-
acts with its own spatial behaviour (Pinter-Wollman et al.
2014; Spiegel et al. 2016; Webber & Vander Wal 2018; Albery
et al. 2021), and with a range of extrinsic factors: demography
determines local population density and structuring (Shizuka
& Johnson 2020), whereas the environment shapes resource
distributions, movement corridors and emergent patterns of
space use, all of which will influence the architecture of the
social system (Firth & Sheldon 2016; Webber & Vander Wal
2018; Farine & Sheldon 2019; He et al. 2019). Moreover, the
social environment itself can drive space use decisions, creat-
ing a bidirectional causal relationship between the two (Firth
& Sheldon 2016; Spiegel et al. 2016). As such, it is important
to consider spatial behaviour and environmental context when
assessing the causes and consequences of individual-level
social network positioning (Pinter-Wollman et al. 2014; Spie-
gel et al. 2016; Webber & Vander Wal 2018; He et al. 2019;
Albery et al. 2021), yet doing so remains difficult in most sys-
tems due to the complexity of spatial-social analyses that
incorporate these processes.
The spatial correlates of social network structure are poorly

understood because they are highly multivariate and

(therefore) difficult to analyse. Encouragingly, strong support
exists for simple associations between individuals’ spatial and
social behaviours. For example, spatial proximity and social
connections are often correlated, because (1) individuals that
share more space are more likely to associate or interact and
(2) those that are socially affiliated are likely to opt to share
more space (Firth & Sheldon 2016; Spiegel et al. 2016). Corre-
lated spatial-social proximity has been observed in diverse
taxa including elk (Vander Wal et al. 2014), raccoons (Robert
et al. 2012), birds (Firth & Sheldon 2016), and myriad other
systems. Similarly, spatial and social network centrality are
occasionally found to correlate (Mourier et al. 2019), as are
temporal variations in population density and social contact
rates (Sanchez & Hudgens 2015). However, spatial behaviours
can be summarised using a wide range of metrics, including
individuals’ spatial activity levels (e.g. home range area), pair-
wise space sharing (e.g. distances or home range overlaps),
demographic structure (e.g. temporal population size or local
conspecific density), and point location on the two-dimen-
sional landscape; the interplay between these spatial traits and
social network positioning is much more poorly understood
than spatial-social proximity. For example, are more social
individuals simply wider-ranging, leading them to make more
contacts? Do they most often inhabit areas of high population
density or well-used movement corridors? These variable spa-
tial components take a combination of different data struc-
tures, and are therefore difficult to include in the same
models, particularly in large numbers and alongside a range
of other individual-level phenotypes. Additionally, spatial data
such as telemetry or ‘gambit of the group’ approaches are
occasionally used to approximate or estimate social beha-
viour, so space and sociality may be confounded at the data
collection level, and may then be difficult to extricate (Albery
et al. 2021). It is therefore unclear to what extent individuals’
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social network positions are representative of (1) their own
social behaviour; (2) their own spatial behaviour; (3) their sit-
uation within the population; (4) other aspects of their biotic
and abiotic environment such as landscape structure and; (5)
the intrinsic phenotypic traits that researchers are commonly
interested in investigating.
Several frameworks have been proposed to facilitate the

untangling of spatial and social processes in wild animals
(Jacoby & Freeman 2016; Silk et al. 2018, 2019; Webber &
Vander Wal 2018; Mourier et al. 2019; Albery et al. 2021). To
date, statistical methods focus on incorporating socio-spatial
behaviours into the node-and-edge structure of network data,
using e.g. null network permutations (Firth & Sheldon 2016),
spatially embedded networks (Daraganova et al. 2012), and
nested ‘networks of networks’ composed of movement trajec-
tories (Mourier et al. 2019). Many such analyses involve
reducing movement patterns into some form of spatial net-
work based on home range overlap or spatial proximity
between dyads, which are then incorporated into models. For
example, statistical models named ‘animal models’ can exam-
ine spatial variation by fitting such matrices as variance com-
ponents, potentially alongside other dyadic similarity matrices
(i.e. pairwise measures of similarity), to quantify genetic and
non-genetic contributions to individuals’ phenotypes (Kruuk
2004; Stopher et al. 2012b; Regan et al. 2016; Thomson et al.
2018; Webber & Vander Wal 2018). As yet, the focus on con-
trolling for spatial autocorrelation using space sharing and
network permutations has contributed to a lack of clarity con-
cerning the role that spatial behaviour and environmental
context play in driving social network positioning (Albery
et al. 2021).
Studies across ecological disciplines increasingly use Inte-

grated Nested Laplace Approximation (INLA) models to con-
trol for spatial autocorrelation in a multitude of contexts
(Lindgren et al. 2011; Lindgren & Rue 2015; Zuur et al.
2017). As well as including fixed and random effects to quan-
tify individual-level drivers, these models can incorporate dya-
dic space sharing components (Holand et al. 2013) and
stochastic partial differentiation equation (SPDE) effects to
model two-dimensional spatial patterns in the response vari-
able, thereby controlling for and estimating spatiotemporal
variation associated with fine-scale positioning within the
landscape (Albery et al. 2019). As such, these models offer an
exciting opportunity to test and compare the roles of a range
of spatial behaviours and autocorrelation structures, alongside
phenotypic drivers, in determining social network positioning.
We address this question using the long-term study in the

Isle of Rum red deer (Cervus elaphus). These study animals
comprise an unmanaged wild population with a contiguous
fission-fusion social system (Clutton-Brock et al. 1982). They
experience strong environmental gradients and (therefore)
exhibit spatial autocorrelation in a number of important phe-
notypes: individuals with greater home range overlap have
more similar behavioural and life-history traits (Stopher et al.
2012b), and those in closer proximity have more similar para-
site burdens (Albery et al. 2019). Furthermore, as with other
matrilineal mammalian systems, closely related individuals fre-
quently associate (Clutton-Brock et al. 1982) and live closer
together (Stopher et al. 2012b). Individuals have highly

repeatable home ranges (Stopher et al. 2012b) that decline in
size over their lifetimes, predicting declining survival probabil-
ity (Froy et al. 2018). The study area has a strong spatial gra-
dient in resource availability, with high-quality grazing heavily
concentrated in the far north of the system, and with most
individuals aggregating around this area (Mcloughlin et al.
2006), such that population density decreases outwards
towards the edge of the study population (Clutton-Brock
et al. 1982). As such, the deer comprise a useful system for
assessing spatial-social relationships in the wild.
To assess how individuals’ spatial behaviours translate to

social network positions, we constructed fine-scale social net-
works from 43 years of censuses of the study population. We
derived eight different individual-level network positioning
measures of varying complexity that are important to different
social processes (Krause et al. 2015). Using multi-matrix ani-
mal models in INLA, we examined whether spatial locations,
space sharing, home range area, and local population density
explained variation in network position metrics, alongside a
range of individual-, temporal- and population-level factors.
Specifically, we aimed to test two hypotheses: that the struc-
ture of the social network would be highly dependent on the
distribution of population density in space; and that individu-
als’ social network centrality would be largely explained by
their ranging behaviour, where wide-ranging individuals were
more likely to be socially well-connected. We further expected
that space sharing and point locations would uncover substan-
tial spatial autocorrelation in social network positioning, and
that different social network metrics would exhibit different
spatial patterns and drivers. This not only comprises a large-
scale empirical examination of the factors shaping social net-
work positions in this extensively monitored wild mammal,
but also provides a methodological advancement in develop-
ing powerful, flexible new methods (INLA-based multi-matrix
animal models) with broad potential for examining spatial-so-
cial processes in this and other systems.

METHODS

Study system and censusing

The study was carried out on an unpredated long-term study
population of red deer on the Isle of Rum, Scotland
(57°N,6°200W). The natural history of this matrilineal mam-
malian system has been studied extensively (Clutton-Brock
et al. 1982), and we focussed on females aged 3 + years, as
these individuals have the most complete associated census
data, and few males live in the study area except during the
mating period. Individuals are monitored from birth, provid-
ing substantial life history and behavioural data, and > 90%
of calves are caught and tagged, with tissue samples taken
(Clutton-Brock et al. 1982). The population thus has compre-
hensive genomic data, allowing high-powered quantitative
genetic analyses: most individuals born since 1982 have been
genotyped at > 37 000 SNPs, distributed throughout the gen-
ome (e.g. Huisman, Kruuk, Ellis, Clutton-Brock, & Pember-
ton, 2016). Census data were collected for the years 1974–
2017, totalling 423 070 census observations. Deer were cen-
sused by field workers five times a month, for 8 months of the
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year, along one of two alternating routes (Clutton-Brock
et al. 1982). Individuals’ identities, locations (to the nearest
100M), and group membership were recorded. Grouping
events were estimated by seasoned field workers according to
a variant of the ‘chain rule’ (e.g. Castles et al., 2014), where
individuals grazing in a contiguous group within close prox-
imity of each other (each individual under ~ 10 metres of at
least one other individual in the group) were deemed to be
associating, with mean 130.4 groups observed per individual
across their lifetime (range 6–943). The mortality period falls
between Jan and March, when there is the least available
food, and minimal mortality occurs outside this period. We
only used census records in each May-December period, from
which we derived annual social network position measures as
response variables (Figures 1 and 2). We elected to investigate
this seasonal period because it stretches from the spring calv-
ing period until the beginning of the mortality period, simpli-
fying network construction and avoiding complications arising
from mortality events. Our dataset totalled 3356 annual obser-
vations among 532 grown females (Figure 1).
In this system, female reproduction imposes substantial

costs for immunity and parasitism (Albery et al. 2020b), and

for subsequent survival and reproduction (Clutton-Brock,
Albon, & Guinness, 1989; Froy, Walling, Pemberton, Clut-
ton-Brock, & Kruuk, 2016). If a female reproduces, she pro-
duces 1 calf per year in the spring, generally beginning in
May; the ‘deer year’ begins on May 1 for this reason. Here,
reproductive status was classified into the following four cate-
gories using behavioural observations: True Yeld (did not give
birth); Summer Yeld (the female’s calf died in the summer,
before 1st October); Winter Yeld (the female’s calf died in the
winter, after 1st October) and Milk (calf survived to 1st May
the following calendar year).

GENERATING SPATIAL AND SOCIAL MATRICES

All code is available online at https://github.com/gfalbery/
Spocial_Deer. We constructed the home range overlap (HRO)
matrix using the R package AdeHabitatHR (Calenge 2011),
following previous methodology (Stopher et al. 2012b; Regan
et al. 2016; Froy et al. 2018). First, using a kernel density esti-
mation method, we derived lifetime home ranges for each
individual with more than five census observations. Previous
analysis has shown that this system is robust to the subset of

Figure 1 Data processing and analysis pipeline, demonstrating how behavioural census data were collected, used to derive social and spatial behavioural

traits, and fitted in INLA animal model GLMMs. Numbers in brackets represent sample sizes, and only include females aged 3 + years. Blue arrows

represent social behaviour; red arrows represent spatial behaviours. See methods for the fixed and random effects. The text box displays the definitions for

the different spatial effects

© 2021 John Wiley & Sons Ltd.

Letters Deer spatial-social behaviours 3

https://github.com/gfalbery/Spocial_Deer
https://github.com/gfalbery/Spocial_Deer


observations used to generate home ranges (Froy et al. 2018).
We used lifetime home ranges to fit one value per individual
in the animal models; individual ranges (and range sizes) cor-
relate strongly from year to year (Stopher et al. 2012b; Froy
et al. 2018). We derived proportional HRO of each dyad
using Bhattacharya Affinity (following Stopher et al. 2012b),
producing values between 0 and 1 (i.e. no overlap to complete
overlap).
To control for individuals’ two-dimensional point locations,

we used a Stochastic Partial Differentiation Equation (SPDE)
effect in INLA. This effect models the distance between points
to calculate spatial autocorrelation, using Matern covariance
(Lindgren et al. 2011). This random effect used individuals’
annual centroids (mean easting and northing in a given year)
or lifetime centroids (mean easting and northing across all
observations) as point locations to approximate spatial varia-
tion in the response variable (Lindgren et al. 2011; Albery
et al. 2019).
We used a genomic relatedness matrix (GRM) using

homozygosity at 37 000 Single Nucleotide Polymorphisms,
scaled at the population level (Yang et al. 2011; for a popula-
tion-specific summary, see Huisman et al. 2016). This matrix
is well-correlated with pedigree-derived relatedness metrics
(Huisman et al. 2016). HRO was well-correlated with distance
between lifetime centroids (i.e. closer individuals tended to
share more range), and both were weakly but significantly
correlated with genetic relatedness (Figure S1).

To test whether social network positions could be explained
by population density, we derived the local density of individ-
uals again using AdeHabitatHR (Calenge 2011). We generated
density kernels of observations, and then assigned individual
deer their local population density based on their location on
this kernel, following previous methodology developed in bad-
gers (Albery et al. 2020a). This local density value was then
fitted as a fixed explanatory variable. We used four different
density metrics, each examining the density of a different
observation type: lifetime centroids (‘lifetime density’); annual
centroids (‘annual density’); all observations across the study
period (‘sighting density’); and all observations in the focal
year (‘annual sighting density’). Only one such density metric
was fitted at once. We also calculated annual home range
areas (HRA) by taking the 70% isopleth of each individual’s
annual space use distribution, following previous methodology
(Froy et al. 2018). This HRA variable was fitted as a fixed
effect in the same way as local density.
We constructed a series of 43 annual social networks using

‘gambit of the group’, where individuals in the same grouping
event (as described above) were taken to be associating (Franks
et al. 2010). Dyadic associations were calculated using the simple
ratio index (Cairns & Schwager 1987) derived as a proportion of
total sightings (grouping events) in which the focal individuals
were seen together: SightingsA,B/(SightingsA + SightingsB-Sight-
ingsA,B), or IntersectA,B/UnionA,B. In this dyadic matrix,
0 = never seen together and 1 = never seen apart.

Figure 2 Spatial structuring of the 2016 social

association network as a representative example. a:

the spatial locations (centroids) of individual deer,

connected by their social associations. Line opacity

and width are weighted by connection strength. Ten

axis units = 1KM. b: the same social network with

the nodes positioned in a network spring-layout

(Csardi & Nepusz 2006) and then expanded into an

even, circular grid according to their nearest spatial

positions in A. The points’ (i.e. nodes’) sizes and

colours show individuals’ strength centrality (large

and red = high strength; small and blue = low

strength). Thickness of the lines (i.e. edges)

connecting them shows dyadic association strength

between individuals. c: the position of the Isle of

Rum in Scotland and d: the position of the examined

area in the context of the Island as a whole
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Statistical analysis

Metrics
Using the annual social networks, we derived eight individual-
level network metrics which that are commonly used across
animal social networks and have been considered in detail
(Whitehead 2008; Brent 2015; Krause et al. 2015; Firth et al.
2017). We set each of these network metrics for use as
response variables in separate INLA Generalised Linear
Mixed Models (GLMMs) with a Gaussian family specifica-
tion. In increasing order of complexity, our measures included
four direct sociality metrics, which only take into account an
individual’s connections with other individuals: (1) Group Size
– the average number of individuals a deer associated with
per sighting; (2) Degree – the number of unique individuals
she was observed with; (3) Strength – sum of all their
weighted social associations to others; (4) Mean Strength – an
individual’s average association strength to each of the unique
individuals she was observed with (equivalent to strength
divided by degree). We also included four more complex ‘indi-
rect’ metrics (all using algorithms as specified from (Csardi &
Nepusz 2006)), which also take into account an individual’s
connections’ connections: (5) Eigenvector centrality – which
considers the sum of their own connections and the sum of
their associates’ connections; (6) Weighted Eigenvector –
which is akin to eigenvector centrality but also accounts for
the weights of theirs, and their associates, connections; (7)
Betweenness – the number of shortest paths that pass through
the focal individual to traverse the whole network; (8) Cluster-
ing (local) – the tendency for an individual’s contacts to be
connected to one another, forming triads. The raw, untrans-
formed correlations were assessed for all metrics, and R lay
between �0.5 and 0.879 across metrics (Figure S2). When
modelling them as response variables, to approximate normal-
ity, all social metrics were square root-transformed apart from
eigenvector centralities (which were left untransformed), group
size (which was cube root-transformed), and betweenness
(which was log(X + 1)-transformed). Each social network
metric was fitted as a response variable in a separate model
set (as outlined conceptually in Figure 1).

Base model structure
We ensured that all models followed the same base structure.
Random effects included individual identity and year (categor-
ical random intercepts), and the genetic relatedness matrix.
Fixed effects included Age (continuous, in years), Reproduc-
tive Status (four categories: True Yeld, Summer Yeld, Winter
Yeld, and Milk), and Number of observations (continuous,
log-transformed to approximate normality), alongside year-
level continuous factors including Year (continuous) and
annual study Population Size (log-transformed). All continu-
ous response and explanatory variables were standardised to
have a mean of zero and a standard deviation of 1. Fixed
effect estimates were provided by the mean and 95% credibil-
ity intervals of the posterior estimate distribution.

Adding spatial components
To investigate the divergent value of different spatial beha-
viours, we iteratively added spatial effects to the base model,

investigating which behaviours best fit the data. These spatial
behaviours corresponded to four broad components in Fig-
ure 1: space sharing (HRO matrix), home range area (HRA),
point locations (SPDE effect), and local population density
(density fixed effect). For space sharing, we only used one
metric: lifetime HRO (see above). For point locations, we
selected between (1) lifetime centroids, (2) annual centroids
and (3) annual centroids with a spatiotemporally varying
annual field. For density, we used the four metrics outlined
above (‘lifetime’, ‘annual’, ‘sighting’ and ‘annual sighting’ den-
sity). To distinguish between competitive models we used
Deviance Information Criterion (DIC). In each round, we
added each spatial behaviour individually and then kept the
best-fitting one, until all four had been added.

Comparing all spatial and non-spatial drivers
To compare the relative importance of all fixed and random
effects, we examined the model’s predicted values and their
correlations with the observed values, representing the propor-
tion of the variance that was explained by the model (i.e. R2).
We used the model to predict each social behaviour metric,
and iteratively held each explanatory variable’s predictions at
the mean, one at a time. We then assessed the squared corre-
lations of these values with the observed values, relative to
those of the full model. Variables with greater effects in the
model produced less accurate predicted values when held con-
stant.

RESULTS

Spatial behaviours were important in determining all eight
individual-level social network position variables. The non-
spatial model was far the poorest-fitting for all eight metrics,
and the DIC changes associated with adding spatial compo-
nents were substantial (Figure 3a). Generally, wide-ranging
individuals and those living in areas of greater population
density tended to be more central, and space sharing and
point location effects both revealed substantial spatial auto-
correlation (Figure 3).
Notably, point location-based SPDE effects improved

model fit substantially in addition to HRA and density effects,
and had a greater effect on model fit than space sharing HRO
effects, even when conceptualised at the same timescale (i.e.
across the individual’s lifetime). Investigating the R2 compo-
nents of the models containing only HRO (i.e. without SPDE
effects) revealed that in general spatial overlap accounted for
more variation than the genetic matrix (Figure S3), but com-
paring these with the other models revealed that the point
location effects contributed more than either of these matrices
(Figure 3b). Annually varying centroids further improved
model fit, and allowing the spatial field to vary between years
in our spatiotemporal models improved models even more
(Figure 3a). Although the space sharing and genomic related-
ness matrices had similar sized impacts on the full models
(Figure 3b), removing the SPDE effect resulted in a substan-
tial increase in the HRO effect, but with very little impact on
the Genomic Relatedness Matrix’s R2 (Figure S3). These find-
ings were relatively consistent across all metrics (Figure 3a,b),
although the SPDE effect was notably smaller for betweenness
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(Figure 3b). Taken together, these results reveal that lifetime
space sharing was good at accounting for variation in social
behaviour, but that its effect was surpassed by increasingly
complex temporal formulations of point location effects.
We compared the importance of all fixed and random

effects by predicting selectively from the model, revealing
overwhelmingly strong effects of spatiotemporal drivers (Fig-
ure 3b). Our models fit well and explained a substantial
amount of variation in social network centrality (>70%); the
majority of the fit was lent by a combination of the INLA

SPDE effect, fixed effects of local population density, and
random effects of year (Figure 3b). Space sharing (HRO)
and home range area (HRA) had comparatively small
effects.
The number of observations also had a notable impact for

Degree, Betweenness, and Clustering (Figure 3b). Fixed
effects for year and observation numbers were generally
strong and significantly positive across metrics, except in the
case of clustering, for which observation number’s effect was
significantly negative (Figure 3b). There were also small

Figure 3 Model outputs demonstrating strong effects of spatial and non-spatial drivers on social network positions. a: DIC changes associated with

addition of different spatial components, for all eight social network centrality measures. Variables are arranged in order of mean contribution to model

fit, which varied little among response variables. Different colours correspond to different network centrality response variables, with the same colour key

as panel C. GRM = Genomic Relatedness Matrix. HRA = Home Range Area. HRO = home range overlap. The SPDE models are differentiated into

those using annual centroids (‘SPDE’) and the version with spatiotemporally varying annual spatial fields (‘tSPDE’). b: Variance accounted for by each

variable for all eight network position measures, expressed as contribution to R2 in the annual model (squared correlation between observed and predicted

values). Different shades correspond to different variables. fYear = year as a categorical random effect. HRA = Home Range Area. GRM = Genomic

Relatedness Matrix. HRO = home range overlap. Name = individual identity. NObs = number of observations (i.e. sampling bias). PopN = population

size. Status = reproductive status. SPDE = point location effects estimated using the Stochastic Partial Differentiation Equation effect in the INLA models.

For all response variables, individual level effects (Age, Reproductive Status, Name) had a negligible effect. c: Fixed effect estimates for the models. Fixed

effects are grouped into individual factors (age and three reproductive status effects), annual factors (continuous time in years since study began, and

annual population size) and sampling factors (observation number). Reproductive status effects are separated into four levels: did not reproduce (the

intercept); calf died in the first few months of life (‘Summer Yeld’); calf died during the winter (‘Winter Yeld’) and calf survived to May the following year

(‘Milk’). Different colours correspond to different network centrality response variables. Points represent the posterior mean; error bars denote the 95%

credibility intervals for the effects. Asterisks denote significant variables (i.e. those whose estimates did not overlap with zero). Significant variables are fully

opaque, whereas non-significant ones are transparent
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positive effects of population size on betweenness and degree
centrality (Figure 3b).
Although individual-level drivers (reproduction, age and

individual identity) had a negligible impact on all variables’
R2 (Figure 3b), many had a significant effect (i.e. their 95%
credibility intervals did not overlap with zero; Figure 3c).
Individuals whose calves lived to the winter and then either
died before the 1st May (‘Winter Yeld’) or survived (‘Milk’)
were generally less central than those that did not give birth
(‘True Yeld’) or whose calf died before 1st October (‘Summer
Yeld’). Similarly, there were minor age-related decreases in
network centrality for the direct metrics (Group Size, Degree
and Strength; Figure 3c).
To investigate spatial patterns of sociality when accounting

for our fixed and random effects, we projected the annual
SPDE random effect in two-dimensional space (Figure 4; Fig-
ures S5-S12). The spatial distributions of network centrality
metrics were highly variable, but direct metrics generally
peaked in the centre of the study system and decreased out-
wards (Figure 4). Mean Strength was an exception, being low-
est in the centre and increasing outward (Figure 4d);
Clustering was patchily distributed, such that no clear pattern
was evident (Figure 4h) and Betweenness was slightly offset,
being highest in the north-northeast of the study area rather
than in the central north (Figure 4g). The range of autocorre-
lation also varied among metrics; Betweenness and Clustering
had notably shorter ranges than the other metrics, showing
that they change more rapidly in space (Figure S4). We also
plotted the spatial fields through time, revealing substantial
variation in the spatial fields across the study period (Figures
S5–S12).

DISCUSSION

The role of spatial behaviour in driving social network structure

The position individuals occupy within their social networks
can affect many aspects of their ecology and evolution
(Krause et al. 2015; Firth et al. 2018; Sah et al. 2018), and
our results confirm the powerful role of fine-scale spatial con-
text in shaping such traits (e.g. Webber & Vander Wal, 2018;
Farine & Sheldon, 2019; Mourier et al., 2019). Capitalising on
our models’ ability to compare the influence of a wide range
of spatial and non-spatial components, we found that spatial
behaviour and environmental context were the most impor-
tant correlates of social network centrality – more so than a
suite of individual-level phenotypes and demographic factors.
Individuals with larger ranges and inhabiting higher-density
areas were more central in the social network, revealing the
important role of individual spatial activity levels and location
within the broader population structure. As expected, models
were further improved when we incorporated pairwise space
sharing and two-dimensional point locations, demonstrating
that an individual’s social network position is not determined
simply by the density of nearby individuals and by its own
spatial activity, but by other aspects of the fine-scale sur-
rounding environment such as microclimate, resource distribu-
tion, and landscape architecture (Spiegel et al. 2018; Webber
& Vander Wal 2018; He et al. 2019). Reciprocally, individuals

may be altering their spatial behaviour, e.g. opting to share
more space or live closer together if they are more socially
connected (Firth & Sheldon 2016; Spiegel et al. 2016). As
such, we propose that social network studies should more reg-
ularly incorporate both space sharing and (temporally vary-
ing) point locations in their statistical approaches to
anticipate these effects, alongside specific spatial behaviours
thought to drive social network position. This practice will
help to buffer for the fact that the spatial environment not
only correlates with social proximity, but can alter the fabric
of the network itself.

The landscape of sociality

One of the foremost advantages of our approach is the ability
to flexibly investigate two-dimensional spatial patterns of
social network centrality. This allowed us to qualitatively
assess the spatial structure of the social network, while pro-
viding clues towards the causal factors. Most notably,
betweenness peaked in the north-northeast of the system,
likely because the far northeastern community is relatively iso-
lated from the rest of the population due to the landscape
structure (Figure 2), so that many ‘social paths’ that traverse
the population (the criteria for betweenness centrality) go
through individuals in this intermediate (north-northeast)
area. That is, individuals living in this area are more likely to
be connected to both the far eastern communities and the cen-
tral and western ones.
As expected, direct centrality metrics (group size, degree

and strength) were affected by local population density, which
peaks in the central north study area due to the concentration
of high-quality grazing (Clutton-Brock et al. 1982). Individu-
als’ resource selection behaviours increase local density in this
area (Clutton-Brock et al. 1982; Mcloughlin et al. 2006), and
will increase social connectivity as a result (Ostfeld et al. 1986;
Sanchez & Hudgens 2015; Webber & Vander Wal 2018). This
comprises strong evidence for density-related increases in
social contact frequency, and accentuates the vital importance
of considering resource distribution, habitat selection, and
population structure when examining social network corre-
lates (Spiegel et al. 2016; Webber & Vander Wal 2018; Farine
& Sheldon 2019; He et al. 2019). However, because density
was accounted for as a fixed effect in the models, the spatial
patterns of location effects for the direct metrics did not
strictly follow the spatial pattern of density. Instead, these
metrics peaked in the centre of the study population, demon-
strating that individuals living in this central region are more
well-connected when accounting for population density, and
could represent a difficult-to-detect spatial observation bias or
an edge effect where social pairs are less likely to occur at the
fringes of the study system. Combining these spatial compo-
nents allowed us to effectively differentiate what we do know
(that greater population density drives increased social con-
nectedness) from what we do not (the drivers of greater
sociality for individuals in the central area).
Without using the SPDE effect (i.e. relying only on gener-

alised pairwise space sharing rather than accounting for speci-
fic two-dimensional spatial patterns), these insights into these
patterns may have been harder to detect. An alternative
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method could involve splitting the population into subpopula-
tions and analysing them separately or comparing them, but
this method has been shown to be less powerful in this popu-
lation (Albery et al. 2019), and is ultimately based on arbi-
trary choices if a population is mixed. The causes of the
spatial distribution of clustering remain unresolved, but the
pattern highlights areas where individuals are connected
together in triads or tight cliques, and appears to be nega-
tively correlated with betweenness (Figure 4). For traits such
as this, it is unlikely that a simpler explanatory variable could
be formulated to quantify the spatial-social processes at play.
Regardless of the causes of the spatial patterns, such fine-

scale variation across the landscape holds important ecologi-
cal consequences, particularly for the more complex network
metrics. For instance, the areas of high clustering may act as
‘incubator’ areas where cliques can develop new socially influ-
enced behaviours (Centola 2018; Guilbeault et al. 2018; Firth
2020). The high contact rates in the northern central areas
might sustain high local burdens of directly transmitted dis-
eases (Cote & Poulin 1995), whereas individuals inhabiting the
high-betweenness intermediate areas may be important for
transmitting novel diseases across the population as a whole
(VanderWaal et al. 2014).

Analytical benefits of INLA animal models

Analyses using multiple layers of different behaviours are
well-suited to extricating space and sociality in wild animal
systems (Silk et al. 2018; Webber & Vander Wal 2018; Finn
et al. 2019), and there is increasing conceptual and

analytical overlap with the related field of movement ecol-
ogy (Jacoby & Freeman 2016; Mourier et al. 2019; Pasquar-
etta et al. 2021). Notably, many spatial-social studies suffer
from the necessity to reduce complex movement patterns
into simpler metrics, which risks losing important informa-
tion in the process. As such, recent studies have pushed for
researchers to incorporate movement trajectories themselves
into complex network data structures (Mourier et al. 2019).
Our approach allows incorporation of multiple dyadic and
non-dyadic behavioural measures, and with several analyti-
cal timescales, offering an alternative workaround to this
problem. Although other methods can control for point
locations (e.g. using autoregressive processes and row/col-
umn effects; Stopher et al. 2012b), INLA models allow
greater precision, fit quickly and allow incorporation of spa-
tiotemporal structuring. Furthermore, plotting the SPDE
effect in two dimensions, as in Figure 4, gives an easily
interpretable and intuitive portrayal of network traits in
space that can be hard to visualise using other methods.
For these reasons, we highly recommend further exploration
of INLA animal models as a flexible method with which to
extricate individual, demographic, spatial and temporal con-
tributors to sociality where sample sizes are sufficient
(Thomson et al. 2018; Webber & Vander Wal 2018). In
addition to carrying out network-level manipulations (Dara-
ganova et al. 2012; Davis et al. 2015; Firth & Sheldon
2016; Farine 2017), researchers concerned about spatial con-
founding could implement relatively familiar linear models
of social behaviour, but with additional spatial components
such as SPDE random effects and similarity matrix variance

Figure 4 Spatial fields for the SPDE random effect for each response variable, taken from the INLA animal models and based on annual centroid point

locations. Metrics can be conceptualised as simpler ‘direct’ metrics (top row) and more complex ‘indirect’ metrics (bottom row). Darker colours correspond

to greater values. Each axis tick corresponds to 1km; for the values associated with the Easting and Northings, see Figure 1
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components, with trustworthy and interpretable results (Alb-
ery et al. 2021).

Non-spatial drivers of social network positioning

Although space accounted for an overwhelming amount of
variation, many non-spatial factors had substantial effects.
The random effect for interannual variation was substantial,
and there were detectable linear annual effects and population
size effects, as expected given the important roles of demogra-
phy in structuring social networks (Shizuka & Johnson 2020).
Interestingly, there was a substantial positive association with
study year that was not attributable to the growth in popula-
tion size over the same period. It is possible that this repre-
sents a change in the deer’s social phenotypes over time,
although the potential mechanisms would benefit from further
examination. Individual-level factors had weaker contributions
to model fit and smaller effect sizes: most notably, genetic and
individual random effects were negligible when spatial auto-
correlation was accounted for, confirming the importance of
considering space when assessing heritability in this popula-
tion (Stopher et al. 2012a). Nevertheless, individual-level
effects were encouragingly still detectable and significant, par-
ticularly for simpler ‘direct’ metrics. It is possible that more
complex social network positions are less determined by indi-
vidual social behaviours, particularly for animals with fission–
fusion societies such as the deer; this hypothesis could be
tested using similar spatial-social analyses in a number of
other systems. This finding demonstrates that even when spa-
tial structuring plays a vital role in determining social network
structure, controlling for this structuring analytically can
reveal important, conservative individual-level effects. Future
analyses within this population, and potentially other long-
term studies, could take advantage of this framework by
including environmental drivers such as food availability and
climatic factors to explain patterns of social connectivity,
while further unpicking the causes of the individual-level
trends that we observed.
Our revelation that sociality covaries predictably with a suite

of different spatial behaviours contributes to a rapidly growing
literature connecting elements of the external environment,
intrinsic phenotypes, spatial behaviours, and social network
structure in wild animals. By employing similar approaches, we
hope that future investigations in this and other ecological sys-
tems will be able to more easily identify, interrogate and decon-
struct the interplay between multiple spatial and social
behaviours. As well as increasing the robustness of such studies
to spatial confounding, the multivariate nature of these analyses
will help to open up new and exciting avenues for investigating
the spatial-social interface in ecology.
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