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Abstract
1. The prevalence and intensity of parasites in wild hosts varies across space and is 

a key determinant of infection risk in humans, domestic animals and threatened 
wildlife. Because the immune system serves as the primary barrier to infection, 
replication and transmission following exposure, we here consider the environ-
mental drivers of immunity. Spatial variation in parasite pressure, abiotic and bi-
otic conditions, and anthropogenic factors can all shape immunity across spatial 
scales. Identifying the most important spatial drivers of immunity could help pre-
empt infectious disease risks, especially in the context of how large-scale factors 
such as urbanization affect defence by changing environmental conditions.

2. We provide a synthesis of how to apply macroecological approaches to the study 
of ecoimmunology (i.e. macroimmunology). We first review spatial factors that 
could generate spatial variation in defence, highlighting the need for large-scale 
studies that can differentiate competing environmental predictors of immunity 
and detailing contexts where this approach might be favoured over small-scale 
experimental studies. We next conduct a systematic review of the literature to 
assess the frequency of spatial studies and to classify them according to taxa, im-
mune measures, spatial replication and extent, and statistical methods.

3. We review 210 ecoimmunology studies sampling multiple host populations. We 
show that whereas spatial approaches are relatively common, spatial replication is 
generally low and unlikely to provide sufficient environmental variation or power 
to differentiate competing spatial hypotheses. We also highlight statistical biases 
in macroimmunology, in that few studies characterize and account for spatial de-
pendence statistically, potentially affecting inferences for the relationships be-
tween environmental conditions and immune defence.

4. We use these findings to describe tools from geostatistics and spatial modelling 
that can improve inference about the associations between environmental and 
immunological variation. In particular, we emphasize exploratory tools that can 
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1  | INTRODUC TION

Emerging infectious diseases threaten wildlife, humans and domes-
tic animals (Plowright et al., 2017; Smith, Acevedo-Whitehouse, & 
Pedersen, 2009). By serving as primary barrier to infection, replica-
tion and transmission following exposure, the host immune system 
plays a critical role in determining the outcome of these host–parasite 
interactions (Combes, 2001). Variation in immunity can further pro-
duce heterogeneity in traits that govern the population dynamics of 
infectious disease (Hawley & Altizer, 2011; Jolles, Beechler, & Dolan, 
2015). The primary aim of ecoimmunology has accordingly been to 
explain variation in individual immune phenotypes and to under-
stand their fitness consequences (Graham et al., 2011; Pedersen & 
Babayan, 2011). However, ecoimmunology increasingly acknowl-
edges how broader evolutionary and ecological contexts shape de-
fence (Becker, Downs, Downs, & Martin, 2019; Schoenle, Downs, & 
Martin, 2018). Between-population sources of immunological vari-
ation are becoming increasingly important to consider in the con-
text of environmental change, as large-scale anthropogenic factors 
such as urbanization and deforestation are influencing immunity by 
altering environmental conditions (Acevedo-Whitehouse & Duffus, 
2009; Martin, Hopkins, Mydlarz, & Rohr, 2010).

Immune phenotypes are individual characteristics, and the 
composition of susceptible and resistant hosts in a population de-
termines whether parasites can invade and persist (e.g. herd immu-
nity; Anderson & May, 1991). Individual heterogeneity is shaped 
not only by the genetic variation of hosts (and parasites) but also by 
the environment and resultant plasticity: the ability of genotypes to  
express different phenotypes across environmental con-
texts (Schmid-Hempel, 2003; West-Eberhard, 2003). These  
genotype-by-environment interactions highlight the role that 

habitat heterogeneity plays in shaping immunity and infection out-
comes (Gervasi, Civitello, Kilvitis, & Martin, 2015; Paull et al., 2012). 
Host genotypes, alongside factors such as nutrition or reproductive 
status, affect whether an individual in a particular habitat succumbs 
to infection or lives to transmit to a susceptible host (Plowright, 
Field, et al., 2008). For example, mathematical models show how 
resource-rich habitats can homogenize host infectious periods in a 
population and limit epidemics (Hall, 2019).

Environmental factors operating at multiple spatial scales can drive 
immunological variation. At least three non-exclusive factors may 
vary over space and modify immunity (Table 1): (a) spatial variation 
in parasite pressure that selects for and stimulates immune invest-
ment, (b) spatial variation in abiotic conditions and biotic interactions 
that modify allocation of energy and resources to costly defence and  
(c) anthropogenic changes that alter either of these factors (e.g. urban-
ization) or directly alter immunity (e.g. contaminants). These spatial 
factors commonly act on phenotypic plasticity (e.g. variation in food, 
temperature), although some can also affect host immunogenetics (e.g. 
parasite-mediated selection and population isolation via habitat loss).

Such spatial factors are more likely to act in concert, rather 
than in isolation, to shape immunity. In some cases, captive stud-
ies or field manipulations can isolate particular factors and iden-
tify causal links with immune phenotypes. These approaches are 
most relevant when testing predominantly local sources of envi-
ronmental variation. For example, experimental artificial light at 
night, an aspect of urban environments, alters immune gene regu-
latory networks of house sparrows Passer domesticus and, in turn, 
the duration of infectiousness for transmitting West Nile virus 
to mosquitoes (Kernbach et al., 2019). In addition, common gar-
den approaches can elucidate whether population differences in 
immunity persist under identical environmental conditions; this 

guide spatial sampling and highlight the need for greater use of mixed-effects 
models that account for spatial variability while also allowing researchers to ac-
count for both individual- and habitat-level covariates.

5. We finally discuss future research priorities for macroimmunology, including fo-
cusing on latitudinal gradients, range expansions and urbanization as being espe-
cially amenable to large-scale spatial approaches. Methodologically, we highlight 
critical opportunities posed by assessing spatial variation in host tolerance, using 
metagenomics to quantify spatial variation in parasite pressure, coupling large-
scale field studies with small-scale field experiments and longitudinal approaches, 
and applying statistical tools from macroecology and meta-analysis to identify 
generalizable spatial patterns. Such work will facilitate scaling ecoimmunology 
from individual- to habitat-level insights about the drivers of immune defence and 
help predict where environmental change may most alter infectious disease risk.

K E Y W O R D S

ecoimmunology, host competence, macroecology, resistance, spatial autocorrelation, 
zoonoses
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allows differentiating genotypic variation from phenotypic plas-
ticity (Bonneaud et al., 2011). However, such experimental efforts 
may be limited by the number of co-occurring sources of environ-
mental variation that can be factorially varied (e.g. crossing treat-
ments of food, temperature, infection prevalence and population 

density). Likewise, many large-scale sources of environmental 
variation, such as urbanization, agricultural change, geographic 
range limits and latitudinal gradients, defy categorization into a 
few testable treatments. In other cases, field experiments may be 
logistically challenging or pose ethical concerns (e.g. manipulating 

TA B L E  1   Select examples of multi-site studies of ecoimmunology, arranged by the spatial mechanism(s) expected to link environmental 
variation with immunity: parasite pressure, abiotic and biotic conditions, and anthropogenic factors

Host speciesa Immune measure Study design
Spatial 
mechanism

Association with host 
immunity References

House finch 
(Haemorhous 
mexicanus)

Spleen 
transcriptome

2 sites, United 
States

Parasite pressure Few genes 
differentially 
expressed by site 
exposure history

Zhang, Hill, 
Edwards, and 
Backström (2014)

Bank vole 
(Myodes 
glareolus)

Frequency of 
TLR2 protective 
variant

21 sites, across 
Europe

Parasite pressure Gene frequency 
positively associated 
with human Lyme 
disease rates

Tschirren (2015)

Greater prairie 
chicken 
(Tympanuchus 
cupido)

Non-MHC 
immune genes

6 sites, central 
United States

Biotic Immune gene diversity 
positively associated 
with population size

Bollmer, Ruder, 
Johnson, Eimes, 
and Dunn (2011)

Purple sea fan 
(Gorgonia 
ventalina)

Lysozyme-like 
activity

6 sites, Florida 
Keys, United 
States

Abiotic, parasite 
pressure

Water quality, but not 
disease prevalence, 
positively correlated 
with coral immunity

Couch et al. (2008)

Freshwater 
crustacean 
(Gammarus 
pulex)

Phenoloxidase 
activity (PO)

12 sites, 
Burgundy, 
France

Abiotic, parasite 
pressure

PO negatively 
associated with water 
conductivity and 
prevalence

Cornet et al. (2009)

European honey 
bee (Apis 
mellifera)

PO, encapsulation 
response

23 sites, 
Raleigh, 
United States

Anthropogenic Innate immunity not 
associated with 
urbanization

Appler, Frank, and 
Tarpy (2015)

Tree swallow 
(Tachycineta 
bicolor)

Bacterial killing 
ability

6 sites, 
Québec, 
Canada

Anthropogenic Birds in more 
agricultural habitat 
had stronger 
bacterial killing ability 
(BKA)

Schmitt et al. 
(2017)

Vampire bat 
(Desmodus 
rotundus)

Bacterial killing 
ability

10 sites, Latin 
America

Biotic, 
anthropogenic

BKA positively 
associated with 
demography and 
livestock

Becker, Czirják, 
Volokhov, et al. 
(2018)

Note: We also include the immune parameters measured, aspects of study design (e.g. spatial replication, region) and key findings.
aAll images from Wikimedia Commons. 
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the degree of habitat fragmentation). Given these potential lim-
itations, comparisons of immunity between many replicate wild 
populations across a sufficiently broad spatial extent can help to 
quantify environmental variation needed for macroecology and, in 
turn, determine the importance of environmental factors across 
multiple scales (Wiens, 1989; Figure 1). In an iterative fashion, 
such work could facilitate developing hypotheses for field experi-
ments and captive studies that can triangulate on causal inference 
(Plowright, Sokolow, Gorman, Daszak, & Foley, 2008).

In this review, we introduce how such large-scale approaches to 
ecoimmunology could elucidate the spatial determinants of infection. 
Macroecology, the study of large-scale patterns in animal abundance, 
diversity and distributions (Gaston & Blackburn, 2008), has identified 
many broad-scale determinants of infectious disease (Stephens et al., 
2016), including latitudinal gradients in parasite species richness and 
differentiating the various environmental drivers of emerging infec-
tions (Brierley, Vonhof, Olival, Daszak, & Jones, 2016; Dallas et al., 2018; 
Dunn, Davies, Harris, & Gavin, 2010). Similar approaches (i.e. macroim-
munology) could facilitate novel insights into fundamental questions 
of how environmental variation alters immunity. Do immune profiles 
follow biogeographic patterns? How do range expansions affect host 
defence? Does urbanization have consistent impacts on immune 

function? Delineating spatial patterns in immunity and their underlying 
environmental mechanisms could improve predictions about where 
wild individuals may be vulnerable to infection or act as sources of 
emerging parasites. Moreover, understanding the macroecological 
basis of host traits such as resistance (i.e. the ability to inhibit or reduce 
infection) or competence (i.e. the ability to transmit new infections to 
susceptible hosts or vectors) could be particularly informative, as these 
traits provide mechanistic links between within- and between-host 
infection processes (Martin, Burgan, Adelman, & Gervasi, 2016; Roy & 
Kirchner, 2000) and may be less prone to the sampling biases found in 
global parasite datasets (Han, Kramer, & Drake, 2016).

We here aim to generate a research agenda for macroimmunol-
ogy akin to that developed for the macroecology of infectious dis-
ease (Morand, Bordes, Pisanu, Bellocq, & Krasnov, 2010; Stephens 
et al., 2016). We first provide an overview of the key habitat factors 
that are likely to generate most spatial variation in immunity (Table 1). 
We next perform a systematic review of the ecoimmunology litera-
ture to assess the frequency of spatial approaches and to character-
ize research efforts to date according to host taxa, study design and 
statistical methods. By critically appraising these studies, we use our 
findings to motivate a discussion of geostatistical and spatial mod-
elling tools that can improve inference about associations between 

F I G U R E  1   Conceptual schematic for how sampling designs over broad spatial extents (a) capture more variance (σ2) in environmental 
conditions than over narrow spatial extents (b) and how inference for spatial relationships with immunity is affected by scale. The map 
displays environmental conditions (e.g. annual mean temperature for illustrative purposes) at the resolution of 2.5 minutes latitude from 
WorldClim (Hijmans, Cameron, Parra, Jones, & Jarvis, 2005). Data were extracted from 20 randomly distributed sampling points using 
the raster package in R within a large and a narrow spatial extent. Estimates of σ2 in the underlying environmental gradient are shown for 
both sampling designs. Mean immune phenotype data per site were generated by adding normally distributed noise to the environmental 
gradient; lines show fits from generalized least square models accounting for the spatial dependence of sampled sites. The sampling design 
using a broad spatial extent reveals a strong association between environmental variation and immunity (χ2 = 20.5), whereas that using a 
narrow spatial extent detects no relationship (χ2 = 0.5)
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the environment and immunity while also guiding sampling designs 
for future large-scale studies. Given the early nature of macroimmu-
nology, we outline research questions that are especially well poised 
to answer through spatial methods. We provide methodological rec-
ommendations for addressing such questions, including integrating 
smaller-scale study designs to facilitate causal inference, and we 
outline macroecological approaches for conducting the broad data 
syntheses required to identify generalizable patterns.

2  | SPATIAL FAC TORS DRIVING IMMUNE 
VARIATION

2.1 | Parasite pressure

Differential exposure to parasites across a landscape, as well as 
spatial variation in highly virulent parasite genotypes, can shape 
immunity through short-term plastic changes as well as selec-
tion. For example, regions with greater parasite diversity or active 
transmission can induce plastic changes in antibody concentrations 
(Karsten & Rice, 2006), while infection hotspots over long timescales 
or invasions of virulent parasites can select for frequency changes 
in protective immune genes and thus the evolution of resistance 
(Bonneaud, Balenger, Zhang, Edwards, & Hill, 2012; Tschirren, 
2015; Table 1). Major histocompatibility complex (MHC) diversity 
also often correlates with spatial variation in parasites (Savage & 
Zamudio, 2016), signalling parasite-mediated selection.

Spatial links between parasite pressure and host immunity can 
occur across localized and broad scales driven by environmen-
tal gradients. For example, small-scale variation in the distance to 
poultry farms, a predictor of avian malaria risk in Berthelot's pip-
its Anthus berthelotii, explained variation in MHC allele frequencies 
(Gonzalez-Quevedo, Davies, Phillips, Spurgin, & Richardson, 2016). 
At larger scales, latitudinal gradients in immunity have been ob-
served across taxa ranging from insects (Meister, Tammaru, Sandre, 
& Freitak, 2017) to birds and bats (Becker, Nachtmann, et al., 2019; 
Hasselquist, 2007) and could reflect latitudinal gradients in parasite 
species richness (Lindenfors et al., 2007).

2.2 | Abiotic and biotic factors

Given a finite amount of energetic and nutritional resources, the prin-
ciple of allocation suggests that individuals must trade-off between 
immunity and other costly traits such as reproduction (Lochmiller & 
Deerenberg, 2000). Spatial heterogeneity in abiotic and biotic con-
ditions may shape such trade-offs and accordingly alter spatial pat-
terning of immune phenotypes. For example, spatial variation in water 
conductivity explained variation in innate immunity of Gammarus pulex 
(Cornet, Biard, & Moret, 2009; Table 1). Variation in abiotic conditions 
can also modify energetic trade-offs at large spatial scales; for exam-
ple, tree swallows Tachycineta bicolor at the northern limits of their 
geographic range showed more dramatic trade-offs among multiple 

arms of immunity and with reproduction than birds at their southern 
range limit (Ardia, 2005, 2007).

Biotic conditions can also impact host energetics and immune 
investment. As food is limiting for many wildlife, resource avail-
ability is a key driver of defence (Strandin, Babayan, & Forbes, 
2018). Whereas the allocation model predicts negative trade-offs 
between immunity and costly traits, the acquisition model can ex-
plain positive correlations: if hosts can acquire more resources, 
energy can be allocated to both immunity and other costly traits 
(Van Noordwijk & de Jong, 1986). In turn, habitats with more food 
should allow individuals to invest more in immunity and traits such 
as reproduction (Brzęk & Konarzewski, 2007). Population density 
can further shape spatial patterns in immunity. High population 
densities could suppress immunity from overcrowding (Becker, 
Czirják, Volokhov, et al., 2018; Table 1). However, high population 
density could instead increase parasite pressure and select for 
greater investment in immunity; for example, bird T-cell-mediated 
responses were highest in very dense host populations (Møller, 
Martín-Vivaldi, Merino, & Soler, 2006).

2.3 | Anthropogenic factors

Expanding human populations are changing environments across 
spatial scales from habitat fragmentation, urbanization and agricul-
ture (Acevedo-Whitehouse & Duffus, 2009). Anthropogenic factors 
can shape spatial patterns in immunity by altering the above two 
processes (i.e. changing parasite pressure and abiotic or biotic con-
ditions) and by exposing individuals to novel stressors such as con-
taminants (Martin et al., 2010).

Anthropogenic factors can alter parasite pressure as well as 
abiotic and biotic conditions, thereby indirectly shaping immunity. 
For example, tree swallows Tachycineta bicolor in more agricultural 
habitats had stronger bacterial killing ability (BKA) than birds in 
less agricultural habitats, potentially owing to elevated parasitism 
(Schmitt, Garant, Bélisle, & Pelletier, 2017; Table 1). Vampire bats 
Desmodus rotundus in more agricultural habitats also had stron-
ger BKA, instead likely signalling improved defence from more 
food through abundant livestock prey (Becker, Czirják, Volokhov, 
et al., 2018; Table 1). Given that these similar patterns can stem 
from distinct environmental mechanisms, data-driven syntheses 
to assess how anthropogenic habitats influence immunity across 
spatial scales are especially needed (Messina, Edwards, Eens, & 
Costantini, 2018).

Contaminants can directly shape defence by altering the syn-
thesis or function of immune parameters and by disrupting parts 
of the neuroendocrine system that control immune development 
and growth (Desforges et al., 2016). Hosts are exposed to spatial 
variation in contaminants by proximity to point (e.g. refineries) and 
nonpoint (e.g. agricultural runoff) sources, in turn generating spatial 
variation in immunity. For example, tree swallows breeding in mer-
cury-contaminated habitats exhibited weaker immune responses 
to phytohaemagglutinin challenge than birds in reference habitats 
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(Hawley, Hallinger, & Cristol, 2009), and Algerian mice Mus spretus 
sampled from a polluted site showed distinct immune gene expres-
sion relative to mice from uncontaminated habitats (Ruiz-Laguna, 
Vélez, Pueyo, & Abril, 2016).

3  | CRITIC AL APPR AISAL OF 
MACROIMMUNOLOGY

Given that various spatial factors can affect immunity, spatially 
focused studies can help to differentiate distinct environmental 
mechanisms underlying such geographic patterns. Although these 
studies can be logistically challenging, growing macroecologi-
cal efforts suggest many spatial processes can be distinguished. 
For example, proxies of water quality were associated with spa-
tial variation in sea fan coral Gorgonia ventalina innate immunity, 
whereas historical disease prevalence had no impact, suggesting 
a more dominant role of current abiotic conditions in shaping host 
defence (Couch, Mydlarz, Harvell, & Douglas, 2008; Table 1). To 
assess the degree to which macroimmunology studies can provide 
such inferences, we conducted a systematic review to (a) quantify 
how common spatial studies are in ecoimmunology, (b) how often 
such studies test the effects of these hypothesized spatial fac-
tors and (c) describe spatial studies according to host taxa, spatial 
replication and extent, immune measures and the use of spatial 
statistical methods.

3.1 | Literature review

We conducted systematic searches in Web of Science, PubMed 
and CAB Abstracts in October 2018 using the following string: 
(wild*) AND (‘immune defence’ OR ‘immune response’ OR ‘immune 
function’ OR ‘immune phenotype’ OR ‘immune profiles’ OR ‘immu-
nity’ OR ecoimmunology) AND (environment* OR geograph* OR 
latitud* OR landscape* OR habitat* OR ‘populations’ OR range* 
OR biotic* OR abiotic* OR anthropogo*) NOT (human* OR domes-
tic* OR captiv* OR experiment* OR plant* OR aquacultur*). These 
produced 3,657 studies after excluding duplicates (Figure S1). 
We followed a systematic protocol to screen titles, abstracts and 
full texts to include studies of immunology in wild systems. From 
the remaining 456 studies, we recorded the wildlife taxon and 
whether studies sampled more than one site. This sample likely 
represents only a subset of ecoimmunology, and we interpret  
results accordingly.

For studies that sampled more than one site, we recorded (a) 
host species, (b) number of sites, (c) scale of analysis, (d) immune 
measures, (e) whether studies assessed spatial autocorrelation and 
(f) spatial variation in immunity, (g) statistical methods, (h) whether 
studies quantified spatial variation in environmental conditions 
and related this to immunity, (i) individual covariates included in 
the spatial analysis, (j) if the study also assessed seasonality and 
(k) spatial extent. Most studies did not report extent, which we 

estimated using the longitude and latitude of the most distant 
sites with the geosphere package in R (Hijmans, Williams, Vennes, 
& Hijmans, 2017).

3.2 | Statistical approach

We used the prevalence package to estimate the prevalence of multi-
site studies. To test whether prevalence varied across taxa, we fit 
a generalized linear model (GLM) with binomial errors and a logit 
link. To test how the proportion of multi-site studies has fluctuated 
over time, we fit a generalized additive model (GAM) with year as a 
smoothed term using the MGCV package (Wood, 2006).

In our dataset of only multi-site studies, we performed descrip-
tive analyses to describe the diversity of immune measures, how 
often studies assessed spatial variation and what spatial factors 
were tested. We classified immune measures into seven catego-
ries: antigen challenge (e.g. in vivo and in vitro), functional defence 
(e.g. microbial killing assays), immune cells (e.g. leukocyte counts), 
immune genes (e.g. individual expression, MHC), immune organs 
(e.g. spleen mass, bursa of Fabricius), immune proteins (e.g. acute 
phase, immunoglobulins) and other (e.g. reactive oxygen species). 
We also assessed whether studies measured innate or adaptive 
immunity and used χ2 tests to assess whether measures were  
distributed differentially across taxa. We also estimated the pro-
portion of multi-site studies that assessed spatial variation in  
immunity, using another χ2 test to quantify how these spatial fac-
tors varied across taxa.

We next restricted analyses to studies reporting the number of 
sites sampled. We used the fitdistr package to fit four distributions 
to the number of sites per study to assess skew in spatial sampling 
efforts (Delignette-Muller & Dutang, 2014). We used Akaike infor-
mation criterion (AIC) to select the appropriate error distribution 
to next use in a GLM testing how spatial replication varied with 
taxa (Burnham & Anderson, 2002). We lastly tested whether spa-
tial replication scaled positively with spatial extent, which would 
suggest that sampling efforts match study scale (Wiens, 1989). We 
log10-transformed spatial extent as our response, included the num-
ber of sites as the predictor, and compared three models: a linear 
model, a linear model with a quadratic term and a linear model with 
log-transformed number of sites (i.e. a log–log model).

3.3 | Emerging methodological patterns

Of the 456 ecoimmunology studies from our literature sample, 210 as-
sessed immune variation across multiple sites (46%, 95% CI: 42%–51%). 
This proportion varied by taxa (χ2 = 16.70, p < .01), with fish having more 
multi-site studies (67%) than birds (40%; z = 3.41, p < .01) or mammals 
(43%; z = 3.03, p = .01; Figure 2a). The proportion of multi-site stud-
ies showed no annual change (χ2 = 0.17, p = .68; Figure 2b). Therefore, 
although spatial approaches have been fairly common within ecoimmu-
nology, their use has varied across taxa and been constant over time.
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The most common immune measures were immune genes, im-
mune cells, antigen challenge and immune proteins; 32% of studies 
used assays from multiple categories (67/210). Assays that describe 

functional (parasite-specific) defence (e.g. microbicidal ability, resis-
tance to parasite challenge) were rare (11%). Immune metrics and 
taxon were associated (χ2 = 60, p < .001; Figure 3a); mammal studies 

F I G U R E  2   The proportion of our sample of ecoimmunology studies (n = 456) that studied multiple host populations. (a) The estimated 
prevalence across all data is shown in black with the 95% confidence interval in grey (46%); stratification of these data by wildlife taxa 
suggested that fish had a higher proportion of multi-site studies than birds and mammals, although the latter two taxa had been studied 
more frequently. (b) While the overall number of multi-site studies has increased for ecoimmunology over time (points are scaled by the 
number of studies per year), the relative abundance of multi-site studies has remained unchanged since the 1980s

F I G U R E  3   Description of immunology data and spatial mechanisms assessed in our sample of multi-site studies in the ecoimmunology 
literature. For all 210 studies included in our systematic review, we classified immunology data into seven categories (a). Where possible, 
we also assessed if studies measured innate or adaptive immunity (b). For the 70% of studies that assessed spatial variation in wildlife 
immunology, we classified if studies assessed each of the three mechanisms linking environmental and immunological variation as well as 
space only (c). Barplots are stacked by wildlife taxa
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were more likely to assay immune genes and organs, bird studies 
were more likely to assay immune cells and proteins, bird and mam-
mal studies were more likely to use antigen challenge, and the rare 
assays that describe functional defence were evenly distributed 
(Figure 3a). Of the 84 studies for which measures could be classi-
fied into innate or adaptive immunity (excluding invertebrates), most 
studies quantified adaptive immunity (39%) or both measures (42%); 
this pattern did not vary across taxa (χ2 = 9.59, p = .15; Figure 3b).

Many multi-site studies (168/210) also explicitly assessed spa-
tial variation in immunity. Most of these 168 studies tested this vari-
ation with at least one spatial factor (70%), whereas the remainder 
included site as a fixed effect or used a purely spatial covariate (e.g. 
latitude, island vs. mainland). Few studies (11%) tested parasite pres-
sure using spatial measures such as infection prevalence, parasite 
richness and population exposure history. Approximately one-quarter 
of studies (27%) tested abiotic or biotic conditions through spatial 
measures such as altitude, colony size or temperature. More studies 
(38%) tested anthropogenic factors, using spatial measures such as 
contaminant exposure, intensity of urbanization or habitat fragmenta-
tion. Only 10 studies assessed multiple spatial factors simultaneously. 
The proportion of studies that tested spatial factors varied by taxa 
(χ2 = 22.48, p = .03), with 50% of each spatial factor comprising stud-
ies of mammals and birds (Figure 3c). Thus, whereas multi-site studies 
often examined spatial patterns in immunity and tested environmental 
predictors of this variation, rarely did they test multiple spatial hypoth-
eses. To assess whether this could be an issue of statistical power, we 
next quantified spatial replication and tested whether this matched 
spatial extent.

The degree of spatial replication was best described using a 
Gamma distribution (wi = 1.00; Table S1) with a long right tail and a 
median of four sites (Figure 4a). A GLM with Gamma-distributed errors 
showed that spatial replication did not vary across taxa (χ2 = 4.12, 
p = .39; Figure 4b). We tested whether spatial extent scaled positively 
with the spatial extents of our studies (Figure 4c). For the 157 studies 
where extent was reported or could be derived, a log–log model was 
supported over a linear term for spatial replication (wi = 0.56), whereas 
a quadratic term was only marginally supported (ΔAIC = 1.79; Table 
S2). The log–log model showed that spatial extent was positively asso-
ciated with spatial replication (F1,155 = 4.95, p = .03), denoting a power 
law relationship. The slope was less than one (β = 0.87), suggesting 
that the effect of spatial replication on spatial extent weakens at large 
scales (Figure 4d). This pattern was replicated by the quadratic linear 
model (Figure S2). This result implies that studies with few sites match 
their spatial extent. However, studies with larger extents did not dis-
play a similar increase in spatial replication, suggesting limited ability to 
infer how environment shapes immunity (e.g. Figure 1).

Most macroimmunology studies assessed data at the individual 
scale (64%), with fewer studies operating at the scale of sites (e.g. 
aggregating individual data; 24%) or using both scales (12%). These 
scales were differentially distributed across taxa (χ2 = 16.74, p = .03), 
with mammal and bird studies more often assessing individual vari-
ation (Figure 5a). Only four studies assessed spatial autocorrelation 
(Figure 5b; all with Mantel tests of isolation by distance). Only 20% 
of studies controlled for pseudoreplication by site (43/210); this was 
consistent across taxa (χ2 = 5.63, p = .24; Figure 5c). Most of these 
43 studies (58%) included site as a fixed effect. Only 30% used site 

F I G U R E  4   Spatial replication and 
spatial extent in multi-site ecoimmunology 
studies. (a) The histogram for the 
number of sites per study (e.g. spatial 
replication) is shown in grey with the 
fitted distributions (size and shading are 
proportional to the Akaike weights; Table 
S1). (b) The means and 95% confidence 
intervals from a generalized linear model 
with Gamma-distributed errors are shown 
for wildlife taxa alongside the raw data; 
spatial replication did not vary across 
wildlife. (c) Estimated spatial extent 
is shown for all 157 studies in which 
coordinate data were available or for 
which extent was reported, with shading 
of the bounding boxes corresponding to 
wildlife taxa. (d) Fitted values and 95% 
confidence intervals (grey) for the top 
linear model describing the relationship 
between spatial replication and spatial 
extent (both with a log10 transformation)
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as a random effect in a mixed model (GLMM; 13/43), and only 12% 
used spatial statistical models. These statistical methods did not 
vary across taxa (χ2 = 13.06, p = .12; Figure 5d).

4  | SPATIAL STATISTIC AL METHODS FOR 
ECOIMMUNOLOGY

In addition to detecting generally low spatial replication in macro-
immunology, these descriptive analyses highlight the rarity of 
quantifying spatial autocorrelation and controlling for spatial de-
pendence. We here describe tools from geostatistics and spatial 
analysis to assess and control for spatial variation and to guide fu-
ture spatial sampling designs. Because the application of statistical 
methods to infectious disease data has been reviewed elsewhere 
(e.g. Pullan, Sturrock, Magalhaes, Clements, & Brooker, 2012), we 
highlight concepts and tools more specific to ecoimmunology than 
to epidemiology.

Ecoimmunology data are mostly continuous sources of spa-
tial variation at the individual scale rather than at discrete spatial 
units; binary data (e.g. resistant genotypes) are also possible. Prior 
to hypothesis tests of how environmental variation shapes im-
munity, quantifying continuous spatial dependence can provide 

important insights about the spatial scale at which such effects 
occur (Diniz-Filho, Bini, & Hawkins, 2003). While immunity can be 
compared between discrete sites or populations, spatial dependence 
can be characterized with global and local measures of autocorrela-
tion. Global Moran's I varies from –1 to 1, from perfectly dispersed 
to perfectly clustered spatial data (Moran, 1950). Spatial correlo-
grams can further help estimate local autocorrelation as a function 
of inter-site distance (Koenig & Knops, 1998). The shape of the cor-
relogram can provide insight into the environmental processes gen-
erating the spatial pattern (Legendre & Fortin, 1989). Correlograms 
often show a linear or exponential decline with increasing distance, 
suggesting a highly localized spatial mechanism. Recent work on red 
deer Cervus elaphus illustrates such fine-scale autocorrelation and 
suggests that environmental processes can shape defence within 
even an individual's home range (Albery, Becker, Kenyon, Nussey, 
& Pemberton, 2018). In contrast, correlograms applied to vampire 
bat leukocytes demonstrated autocorrelation at broad scales (thou-
sands of kilometres), suggesting that conditions of the latitudinal 
range margins were more important determinants of immunity than 
local predictors (Becker, Nachtmann, et al., 2019). Whereas our sam-
ple had no analyses that used correlograms, studies did use Mantel 
tests to quantify if similarity in immunity between sites is predicted 
by inter-site distance (Figure 5b). Semi-variograms can also provide 

F I G U R E  5   Statistical approaches used 
in our sample of multi-site studies within 
the ecoimmunology literature. For all 210 
studies included in our systematic review, 
we quantified the scale of data analysis (a), 
if studies assessed spatial autocorrelation 
(b) and if studies controlled for spatial 
dependence (c). For the 43 studies that 
controlled for spatial dependence, we also 
quantified how space was treated in the 
analyses. Barplots are stacked by taxa



     |  981Journal of Animal EcologyBECKER Et al.

more precise estimates of spatial dependence (Goovaerts, 1997). 
Semi-variance (the dissimilarity between observations) increases 
with distance until a maximum value is obtained (i.e. the sill); the 
corresponding inter-site distance is the estimated ‘range’ of spatial 
dependence, which can indicate the spatial scale of environmental 
drivers.

Quantifying spatial dependence can also assist with sampling 
designs, which often involve trade-offs between spatial and tem-
poral replication (Plowright, Becker, McCallum, & Manlove, 2019). 
Researchers may first decide to intensively sample over space but at 
a fixed time. As seasonality could also shape immunity while having 
different effects across space, sampling at a small number of uniform 
timepoints across populations (e.g. winter, summer) may be particu-
larly informative; only 13% of multi-site studies assessed seasonality 
(this did not vary with taxa; χ2 = 0.66, p = .95), highlighting an import-
ant area for future work. Quantifying spatial dependence from pilot 
data or from similar systems could identify the spatial scales at which 
sampling should occur to obtain sufficient immunological variance. 
For example, strong autocorrelation at small scales suggests sites 
could be relatively close, whereas a large range estimate suggests 
sites could be further apart to be subjected to sufficient spatial vari-
ation. Knowing the scale of spatial dependence can also facilitate 
how to best spatially subdivide a given sampling grid for random 
stratified designs, which can limit spatial site clusters generated by 
purely random sampling (Smith, Anderson, & Pawley, 2017).

Our review also suggests macroimmunology studies should better 
control for spatial dependence. Ignoring spatial dependence in statis-
tical analyses can inflate model coefficients, underestimate standard 
errors and bias inference (Legendre, 1993). Approximately a quarter 
of studies (24%) used site-aggregated data; although this could facil-
itate accounting for space with traditional generalized least squares 
models, aggregating individual immunity data can obscure intra- and 
inter-population variation (Downs & Dochtermann, 2014). Aggregating 
data further limits the ability to account for individual-level covari-
ates, such as reproduction and age, that can moderate relationships 
between spatial predictors and immunity (Merrill, Stewart Merrill, 
Barger, & Benson, 2019). Common individual-level covariates in our 
multi-site studies included morphology (e.g. mass), sex and age (Figure 
S3). We strongly encourage greater use of GLMMs that include site as 
a random effect to allow the partitioning of immunological variance 
into repeatability within and between sites as well as quantifying the 
importance of both individual- and habitat-level factors. Furthermore, 
GLMMs can accommodate spatial correlation structures to account for 
the spatial distribution of sites (Zuur, Ieno, Walker, Saveliev, & Smith, 
2009), and autocorrelation measures can be derived to ensure no re-
sidual spatial dependence. Similarly, GAMs can account for nonlinear-
ity in environmental predictors while including a smoothed interaction 
of longitude and latitude or a spatial correlation structure (Wood, 
2006). Integrated Nested Laplace Approximation (INLA) is also becom-
ing popular owing to its computational efficiency and flexible model 
construction (Blangiardo, Cameletti, Baio, & Rue, 2013). INLA incor-
porates a two-dimensional spatial random effect that can be plotted 
to investigate hot- and cold spots of immunity. One INLA case study 

highlighted spatial agreement and discordance between several im-
mune metrics and parasitism in red deer (Albery et al., 2018). Greater 
adoption of spatial statistics will strengthen our understanding of how 
the environment shapes immune defence while minimizing potential 
statistical artefacts.

5  | FUTURE DIREC TIONS FOR 
MACROIMMUNOLOGY

Our synthesis illustrates the growing interest in macroimmunol-
ogy and assessing spatial variation in wildlife defence. However, 
our results also suggest the field is in its early stages with much 
room to expand. Although spatial approaches to ecoimmunology 
are common, spatial replication is low overall, especially for large-
scale studies. This limits the ability of such studies to capture the 
broad environmental variation required for macroecology (Wiens, 
1989), and underpowered analyses linking spatial covariates with 
immunity may risk false negatives (e.g. Figure 1). Most studies do 
not control for spatial dependence, which can risk false positives 
(e.g. underestimating standard errors). Moreover, not characterizing 
spatial dependence is a missed opportunity to develop data-driven 
hypotheses and sampling designs. More generally, whereas ecoim-
munology research on species-level heterogeneity has begun to 
integrate across studies (e.g. Brace et al., 2017; Downs, Schoenle, 
Han, Harrison, & Martin, 2019), work on environmental heterogene-
ity has largely remained idiosyncratic (however, see Morand et al., 
2010 and Messina et al., 2018).

To direct future studies in macroimmunology, we lastly out-
line research questions that are especially well poised to answer 
through spatial approaches, provide methodological recommen-
dations for addressing such questions and outline macroecologi-
cal approaches for conducting the broad data syntheses required 
to assess generalizable patterns. Given the broad taxonomic rep-
resentation of studies included in our synthesis, we focus this 
primarily on birds and mammals. These taxa had greater numbers 
of multi-site studies, were especially well-studied for anthropo-
genic change and their studies were more likely to assess spa-
tial variation in immunity and control for spatial dependence. 
In particular, we draw from work on passerines and rodents, 
which have several advantageous characteristics (Figure 6). Their 
small body sizes mean that many species are easy to live cap-
ture, their small home ranges allow many site replicates and their 
broad geographic ranges facilitate obtaining high environmental 
variation (Hasselquist, 2007; Lindstedt, Miller, & Buskirk, 1986). 
Immunological resources from domestic birds and laboratory 
rodents can also facilitate comparative work, although translat-
ing these reagents to wild species is not without its challenges 
(Martinez, Tomás, Merino, Arriero, & Moreno, 2003; Pedersen 
& Babayan, 2011). Many passerines and rodents are common in 
anthropogenic habitats and are reservoirs for zoonotic and eco-
nomically important parasites, which is relevant for linking en-
vironmental change, immunity and spillover (Han et al., 2016; 
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Reed, Meece, Henkel, & Shukla, 2003). Studies of passerines and 
rodents generally had spatial replication above the study-level 
median (Figure 6), with species such as the tree swallow, great tit 
Parus major, house finch Haemorhous mexicanus, house sparrow 
Passer domesticus, house mouse Mus musculus, bank vole Myodes 
glareolus and field vole Microtus agrestis being especially well rep-
resented in our sample (Table S3).

5.1 | Priority areas for future research

As highlighted in our critical appraisal, most studies that assessed 
spatial variation in immunity did so through anthropogenic or purely 
spatial gradients. Within these factors, we focus on three priority 
questions posed early in this review: does immunity follow biogeo-
graphic patterns, how do range expansions affect defence and does 
urbanization have consistent impacts on immune phenotypes? Such 
topics are united in dealing with large spatial scales and integrat-
ing several environmental factors. We here summarize insights from 
past studies and highlight predictions to test with spatial sampling of 
well-studied species (Table S3) and macroecological data synthesis.

Latitudinal studies of immunity have held particular appeal 
for ecoimmunology, offering potential for simple laws in pat-
terns of host resistance (Hasselquist, 2007; Morand et al., 2010). 

Approaches have ranged from studying closely related species 
pairs across latitudes (Møller, 1998) to field studies of several 
temperate and tropical populations (Adelman, Córdoba-Córdoba, 
Spoelstra, Wikelski, & Hau, 2010; Ardia, 2005; Martin, Hasselquist, 
& Wikelski, 2006; Owen-Ashley, Hasselquist, Råberg, & Wingfield, 
2008). These patterns have been well studied in passerines, for 
which birds closer to the equator tend to show stronger humoral 
but not cell-mediated immunity (Hasselquist, 2007). Rodents have 
been relatively understudied, with latitude being a less consistent 
predictor of defence (Morand et al., 2010; Pyter, Weil, & Nelson, 
2005). An outstanding hypothesis is whether such latitudinal gra-
dients reflect latitudinal gradients in parasitism. Although past 
work has found distinct immune phenotypes between temperate 
and tropical populations, such differences can stem from spatial 
gradients not only in parasitism but also in breeding phenology, 
life history or abiotic conditions. For example, vampire bats from 
their latitudinal range limits had high ratios of heterophils to lym-
phocytes, in contrast to the prediction that these would indicate 
elevated inflammation close to the equator due to higher parasite 
risks (Becker, Nachtmann, et al., 2019). In many systems, latitudi-
nal variation in parasitism remains to be tested (Hasselquist, 2007; 
Morand et al., 2010), while other studies find infection to be higher 
at range limits (e.g. Briers, 2003) or demonstrate inconsistent pat-
terns with latitude that may reflect transmission mode (Clark, 

F I G U R E  6   Passerines and rodents 
are two possible model taxa for 
macroimmunology. The phylogeny of the 
270 species included in our literature 
sample is displayed with the number 
of studies per species shown as bars 
(colour is proportional to size); highlighted 
are the clades containing these two 
orders. We visualize how these orders 
overlay in trait space (body size and 
geographic range size) to emphasize 
the relative ease of live capture and 
sampling these species alongside their 
broad distributions (encompassing high 
environmental variation). Also displayed 
are the distributions of spatial replication 
per study for both orders. See the Online 
Supplement for more information about 
sources of phylogenetic and trait data
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2018; Dallas et al., 2018; Lindenfors et al., 2007). More extensive 
spatial sampling efforts alongside assessment of parasite pressure 
could help differentiate the importance of parasite gradients from 
other environmental factors.

Range expansions and biological invasions are another priority 
for macroimmunology. Immunity can not only facilitate the suc-
cess of species introductions but also determine whether invasive 
individuals are more likely to serve as reservoir hosts for novel 
(i.e. spillover) or native (i.e. spillback) parasites (Kelly, Paterson, 
Townsend, Poulin, & Tompkins, 2009; Lee & Klasing, 2004). 
Various hypotheses have been proposed for drivers of variation 
in immunity across an invasion, including that introduced hosts 
may exhibit damped inflammatory responses given high energetic 
costs of this defence and greater investment in reproduction, that 
hosts in more recently established populations should instead in-
vest more in humoral immunity given possibly elevated parasite 
risks, and that founder events during expansions could lead to re-
duced genetic diversity and weaker defence (Lee & Klasing, 2004; 
Travis et al., 2007). Such hypotheses can be most readily assessed 
through comparing immunity across a gradient of recently estab-
lished and native range populations. Work on passerines and ro-
dents has facilitated several tests of these ideas. Invasive house 
mice and black rats Rattus rattus in Senegal display stronger natural 
antibody responses and higher inflammatory responses compared 
to those in more established populations, suggesting that greater 
parasite exposure at the invasion front drives immunity (Diagne 
et al., 2017). Similarly, inflammation has likely mitigated invasion 
success of house sparrows in Kenya; the expression of toll-like 
receptors (TLRs) 2 and 4 is higher in range-edge birds than birds 
closer to the site of introduction (Martin, Coon, Liebl, & Schrey, 
2014; Martin, Liebl, & Kilvitis, 2015). Whether such patterns arise 
from protective effects of TLR expression, the propensity of high 
TLR expression to mitigate the costs of immunity, or a balance of 
both processes remains an area of active investigation (Martin 
et al., 2017). Spatial sampling across more geographic and taxo-
nomically diverse systems where range expansions occur will fa-
cilitate assessing any general associations between invasions and 
immune defence.

Lastly, urban–rural gradients offer several opportunities for 
macroimmunology. Although many aspects of urbanization can 
shape immunity (French, Webb, Hudson, & Virgin, 2018; Ouyang 
et al., 2018), the availability of anthropogenic resources has re-
ceived increasing attention (Altizer et al., 2018; Becker, Streicker, 
& Altizer, 2015). Spatial studies of passerines suggest that urban 
(and suburban) habitats with supplemental food are associated with 
lower ratios of heterophils to lymphocytes and greater microbicidal 
ability (Wilcoxen et al., 2015). Similarly, anthropogenic food may 
more broadly increase both innate and adaptive defences (Strandin 
et al., 2018). Such patterns are consistent with predictions from 
the acquisition model, where access to more resources can result 
in allocating energy to immune functions with differing costs (Van 
Noordwijk & de Jong, 1986), which may likewise explain patterns 
of general upregulation of immune response in urban great tits and 

other passerine species (Fokidis, Greiner, & Deviche, 2008; Watson, 
Videvall, Andersson, & Isaksson, 2017). The acquisition model may 
also explain how urbanized species can obtain high population den-
sities alongside such immunological differences, if urbanized hosts 
can invest more in both defence and reproduction (Oro, Genovart, 
Tavecchia, Fowler, & Martínez-Abraín, 2013). Spatial studies of  
urbanization can also test how defence differs between island and 
mainland populations. Passerine studies have tested the prediction 
that islands have lower parasite pressure that, in turn, lowers im-
mune investment (Lindström, Foufopoulos, Pärn, & Wikelski, 2004), 
although comparative and case studies have found weak or opposite 
patterns (Matson, 2006; Matson, Mauck, Lynn, & Irene, 2013). As 
urbanization can reduce connectivity (Munshi-South & Kharchenko, 
2010), urban–rural sampling gradients could provide additional as-
sessments. On ecological timescales, isolated populations may lose 
herd immunity and be more vulnerable to pathogens, as suggested 
for Australian flying foxes (Pteropus spp.; Plowright et al., 2011). 
Bats in particular pose several challenges for spatial studies of im-
munity when compared to passerines and rodents (e.g. lack of re-
agents, large home ranges). However, the potential insights about 
parasite spillover to humans and domestic animals may be especially 
important from an applied standpoint, when considering that bats 
host many zoonoses and are increasingly affected by urbanization 
(Kessler et al., 2018).

5.2 | Methodological recommendations

To facilitate testing such questions and improve inference in macro-
immunology, we highlight several methodological recommendations 
for large-scale field studies. These build upon the various benefits 
gained from exploratory geostatistical tools and spatial statistical 
methods.

Although we recommend using geostatistical tools such as cor-
relograms to identify the range of spatial dependence and guide 
sampling decisions (e.g. aid in decisions for the distance between 
field sites), sufficient data may not exist for a given host system 
or for closely related species. Researchers could instead use semi- 
random site distributions (Abolins et al., 2018) or spatial gradients, 
such as sampling latitudinally (Adelman et al., 2010), at the core and 
limits of a geographic range (Ardia, 2007), or along range expan-
sions of invasive species (Martin et al., 2017). As noted above, range  
expansions are particularly interesting for macroimmunology, as 
each is an explicit spatial and temporal process. Considering this 
joint variation, spatial patterns in immunity could be most evident 
in seasons when food is limited or when abiotic conditions are harsh 
(Nelson & Demas, 1996). For example, work on red deer immunity 
found that spatial patterns in antibody concentrations varied sub-
stantially across seasons (Albery et al., 2018).

Although incorporating seasonality into macroimmunology may 
not always be feasible given trade-offs between spatial and tem-
poral sampling, we also implore researchers to consider time when 
standardizing efforts over space. Spatial patterns can be obscured, 
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or artificially produced, if sites are sampled at different months or 
years or use different protocols (Plowright et al., 2019). For ecoim-
munology, factors such as the time between capture and sampling 
and time between sample collection and assays can also introduce 
additional noise (Becker, Czirják, Rynda-Apple, & Plowright, 2018; 
Zylberberg, 2015). For macroimmunology, we thus encourage spa-
tial sampling at a uniform timepoint or conducting spatiotemporally 
coordinated field studies.

A broader concern in ecoimmunology is whether variation in 
immunity corresponds to a host's ability to clear infection or to 
past or current infection state (Bradley & Jackson, 2008). Several 
studies highlighted in this review demonstrate that spatial stud-
ies can differentiate the effect of parasite pressure from those 
of abiotic or biotic conditions when data on both predictors exist 
(e.g. Cornet et al., 2009; Couch et al., 2008; Table 1). However, 
it is often unclear whether to target a priori parasites known to 
exert selective pressures, which can introduce bias if these para-
sites have locally gone extinct in a host population. Alternatively, 
metagenomic assays can quantify parasite diversity more broadly 
(Edwards & Rohwer, 2005). Although the costs of metagenomics 
remain high when applied to individual hosts, macroimmunology 
studies could pool samples by site to generate a spatial metric of 
parasite pressure (Bergner et al., 2019). Such less-biased data on 
spatial parasite diversity could be included with other environ-
mental covariates to assess their relative contribution to shaping 
spatial variation in immune defence. This approach would be es-
pecially informative for testing whether latitudinal gradients in im-
munity simply reflect latitudinal gradients in parasite pressure or 
other biogeographic factors.

Similarly, ecoimmunology has moved from attempting to quan-
tify ‘immunocompetence’ to measuring multiple functional re-
sponses (Demas, Zysling, Beechler, Muehlenbein, & French, 2011). 
The development of sequencing and transcriptomic technologies 
now allows profiling immune gene expression via single gene and 
genomic approaches (Fassbinder-Orth, 2014). Such advances have 
been adopted by macroimmunology, as studies most often tested 
spatial variation in immune genes with qPCR, MHC diversity, and 
RNA-Seq. Systems approaches could also provide less reductionist 
measures of how the environment is associated with immunological 
traits (Martin et al., 2016).

Traits such as resistance and competence are difficult to mea-
sure directly but provide the most effective insights about de-
fence (Downs, Adelman, & Demas, 2014). Most immune measures 
included in our synthesis are likely to reflect resistance or com-
petence; tolerance, the ability to minimize effects of parasites 
on fitness, has rarely been explored spatially. In one key exam-
ple, house finches in areas with a longer history of Mycoplasma 
gallisepticum presence showed greater tolerance than birds in areas 
with no exposure (Adelman, Kirkpatrick, Grodio, & Hawley, 2013). 
Such work, alongside theory on resource variation and tolerance 
(Budischak & Cressler, 2018), highlights the need for future work 
in this area and to assess whether spatial variation in exposure has 
consistent effects. Alongside quantifying spatial parasite diversity, 

future studies on the macroecology of tolerance would also benefit 
from assessing spatial variation in parasite load (Burgan, Gervasi, 
Johnson, & Martin, 2019). Additionally, validations of biomarkers 
for these traits can facilitate more direct interpretations of how 
defence varies spatially. For example, a captive study of house 
sparrows exposed to West Nile virus assessed whether resistance 
or tolerance could be predicted with cytokines. Higher constitu-
tive expression of a pro-inflammatory cytokine predicted shorter 
infectious periods (indicating stronger resistance), whereas 
greater expression of an anti-inflammatory cytokine was associ-
ated with improved tolerance (Burgan, Gervasi, & Martin, 2018). 
Validation of biomarkers for such traits would improve inference in 
macroimmunology.

The experimental validation of biomarkers for resistance and 
tolerance also highlights just one of several complementary areas 
between large-scale studies and more focused, small-scale stud-
ies of immunity and environmental variation. We see macroimmu-
nology as playing an important role in developing hypotheses for 
field experiments and captive studies that triangulate on causal 
inference (Plowright, Sokolow, et al., 2008). In particular, large-
scale field studies could fit into prior research programs for de-
veloping model systems in ecoimmunology, where researchers 
first obtain extensive information about host–parasite interac-
tions and immune phenotypes before identifying reliable biomark-
ers (Pedersen & Babayan, 2011). Following such foundational 
work, a cross-sectional macroimmunology study could identify 
the scale of spatial dependence in immunity across a broad site 
gradient and identify environmental covariates with high impor-
tance. Subsequently, one could set up a focused field manipula-
tion or longitudinal study within a smaller, more logistically feasible 
number of sites that span the identified range of environmental 
variation. For example, a macroimmunology study that identifies 
latitudinal range limits as a key predictor of immune phenotypes, 
rather than elevation or any geographic range edge (Ardia, 2007; 
Becker, Nachtmann, et al., 2019), could direct longitudinal work to 
capture seasonal variation across several sites at the core, north-
ern, and southern parts of a distribution. A common garden study 
of individuals from the core and latitudinal edge populations could 
further assess the degree to which observed differences represent 
genetic variation or phenotypic plasticity. In such an approach, 
prior work on house sparrows showed that immune differences 
between two temperate and tropical house sparrow populations 
persisted in captivity, suggesting that latitudinal variation reflects 
more than acclimation to different habitats (Martin, Pless, Svoboda, 
& Wikelski, 2004). Similarly, large-scale studies that identify urban-
ization as a key determinant of immunity (e.g. Fokidis et al., 2008) 
could be followed by field experiments to further differentiate the 
roles of improved food availability from other ecological factors 
such as infection or population size (Pedersen & Greives, 2008). 
Longitudinal studies could establish tolerance differences between 
habitat contrasts (e.g. recapture rates of infected hosts), while cap-
tive studies could use parasite challenge to test for fitness effects 
between populations (Corby-Harris & Promislow, 2008).
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5.3 | Macroecological approaches for data synthesis

These methodological suggestions could help generate a larger and 
more robust body of data on spatial determinants of immunity. We 
lastly encourage the application of macroecological approaches to 
reveal generalities in how environmental variation relates to im-
mune defence (Martin et al., 2018; Stephens et al., 2016). Machine 
learning algorithms hold particular promise, given their ability to 
accommodate heterogeneous datasets and high degrees of col-
linearity (Hochachka et al., 2007). Boosted regression trees could 
facilitate deriving the importance of environmental covariates col-
lected across diverse spatial scales (e.g. Brock et al., 2019) to immu-
nological data within and between studies and taxa. Furthermore, 
clade-based methods such as phylogenetic factorization, which can 
identify taxonomic groups at various phylogenetic scales that most 
differ in species-level data, could identify which host clades show 
consistent relationships between spatial covariates and specific 
immune phenotypes (Washburne et al., 2019). Future applications 
could assess the degree to which spatial autocorrelation in immunity 
(e.g. range parameters from correlograms, global Moran's I) displays 
phylogenetic signal. Such taxonomic patterns could be applied to 
guide taxa-dependent spatial sampling designs.

Advances in meta-analysis relevant to ecology and evolution 
(Nakagawa & Santos, 2012) could also help reveal general relationships 
between environmental conditions and immunity while controlling for 
phylogenetic relatedness between host species, methodological vari-
ation and spatial proximity of studies. Our systematic review did not 
quantitatively synthesize effect sizes for the relationships between 
spatial covariates and immunity, given the current limitations in spatial 
replication and analysis. However, future application of meta-analytic 
methods could test general support for several of the questions posed 
as research priorities. For example, a recent meta-analysis of forest 
degradation had an overall moderate effect size with immune out-
comes (Messina et al., 2018). Additional meta-analyses could further 
test how particular immune axes (e.g. innate or adaptive), measures 
of function (e.g. BKA) or whole-organism traits (e.g. tolerance) gener-
ally respond to latitude, whether these trends are driven by parasite 
richness and how relationships may vary by taxa. With sufficient data 
across geographies and species, similar meta-analyses could assess 
general patterns in how range expansions affect investment in in-
flammation rather than humoral defence. Meta-analyses of urbaniza-
tion could assess whether these habitats enhance innate defence or 
facilitate a general upregulation of immunity or how greater isolation 
of urban hosts (and lower genetic diversity within populations; Miles, 
Rivkin, Johnson, Munshi-South, & Verrelli, 2019) affects immune re-
sponse and diversity. Such analyses could provide novel and generaliz-
able insights into the spatial drivers of defence.

6  | CONCLUSIONS

Macroecology holds promise as an approach to identify the drivers 
of spatial variation in wildlife immune defence. Future work on the 

host taxa and priority questions emphasized here, alongside oppor-
tunities posed by coupling large-scale field studies with small-scale 
field experiments and longitudinal approaches as well as applying 
large-scale data synthesis, could facilitate scaling ecoimmunology 
from individual- to habitat-level perspectives. Such work could pro-
vide new insights into the environmental drivers of defence while 
also facilitating novel opportunities to predict infection risks in the 
context of climate change (e.g. through latitudinal gradients), range 
expansions and biological invasions, and land conversions (e.g. 
urbanization and habitat loss).
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